

Testing Laboratory 1045.1 accredited by the Czech Accreditation Institute pursuant to ČSN EN ISO/IEC 17025:2018 Strojírenský zkušební ústav, s.p. Zkušební laboratoř (Engineering Test Institute, Public Enterprise, Testing Laboratory) Hudcova 424/56b, Medlánky, 621 00 Brno

Page 1 of 16

INITIAL TYPE TEST REPORT 30-16100/T

Product:

Fireplace stove for wood

Type designation: Kat I (trade mark Sofia 6/8) Kat II (trade mark Sofia 10/14) Kat III

Customer:

Stove Italia srl Via del Santo 11/B 35010 Loreggia ITALY

Manufacturer:

Stove Italia srl Via del Santo 11/B 35010 Loreggia ITALY

Employee responsible:Ing. Radek MacharaReport issue date:2022-06-10Distribution list:1 copy to the Customer

1 copy to the Engineering Test Institute

This document may be copied in its entirety without written consent of the Engineering Test Institute. Partial copies are subject to approval. The results of the tests and verifications shall relate only to the products tested as received or presented. The testing laboratory is not responsible for the data provided by the customer specified in the report.

Testing Laboratory Workplace Brno, Hudcova 424/56b, 621 00 Test Report 30-16100/T Page 2 of 16

The tests were performed based on these documents:

- Order B-76446 of 2022-05-18
- Contract B-76446/30
- Amendment to the contract 0215-RaM/27627 of 2022-06-01

I. Description of product tested

Hot air wood stoves Kat I, Kat II, Kat III are designed for additional heating and heating of living rooms and adjacent rooms by connecting to the central heating system, ie in an ordinary environment.

The fireplace stove consists of a steel weldment.

Primary and secondary air is supplied to the grate-free furnace by means of a pull rod under the door. Secondary air vents at the top of the fireplace.

Tertiary combustion air is supplied to the center of the furnace through a pipe, which is part of the metal deflector.

A catalyst grid is located in the flue.

The products are designed for interrupted operation.

A more detailed description is given in the operating and installation manual, which is an integral part of the documentation.

Basic technical data of the fireplace stove for wood								
Туре	Main dir Height	width	(mm) Depth	Nominal output (kW)	Fuel consumption- wood (kg/h)	Flue gas connector diameter (mm)	Flue draught (Pa)	
Kat I (trade mark Sofia 6/8)			354	8	2.5			
Kat II (trade mark Sofia 10/14)	765	567	537	13	4.1	120	12	
Kat III			720	18	5.5	150		

II. Sample tested

(Table 2)

SZU reg. no.	Product name	Date of submission
0215.22.36555.002	Kat I	2022-06-06
0215.22.36655.003	Kat II	2022-06-08
0215.22.36555.001	Kat III	2022-06-07

The visual inspection, tests and verification were carried out by Radim Řepka at the test station of SZU

The tests were performed using measuring and testing equipment with valid calibration.

(Table 2)

III. Measuring and test equipment:

No.	Name	Inventory number:	(l able 3) Calibration valid until:
1.	Barometer	MaR09_B	06/2023
2.	Thermometer – ambient	MaR10+11_V	06/2023
3.	Hygrometer	MaR10+11_V	06/2023
4.	Draught gauge	MaR08_Tah	07/2023
5.	Scale	022333	03/2024
6.	THERM	021763	01/2023
7.	Analytical scale	021458	04/2023
8.	Calliper	ME 543	06/2022
9.	Combustion product analyser	022317	v
10.	Elemental analyser	022305	x
1 1.	Gravimat	ME 583	09/2023
12.	Kit of temperature measurement	022399-A_T	11/2023

Note: x... Verified using calibration standards prior to measurement

 $+ \hdots \pm$ 5% of the values measured

Uncertainty of measurement

	(Table 4)
Parameter measured	Uncertainty of measurement
Gas analysis	
ĊO	\leq 6 % of the limit values in Table 8
CO2	≤ 2 %
02	≤ 2 %
Temperature	
Flue gas	≤ 5 K
Ambient room	≤ 1.5 K
Water	≤ 0.5 K
Surface	≤ 2 K
Touchable Area	≤ 2 K
Water flow	≤ 0.005 m³/h
Static pressure	≤2 Pa
Mass	
- fuel consumption	± 20 g
- residue	± 5 g
- fuel load ≤ 7.5 kg	± 5 g
> 7.5 kg	± 10 g

The following expanded measurement uncertainties have been calculated as the coefficient of measurement uncertainty and the expanded coefficient k = 2, which corresponds to a coverage probability of 95% for normal distribution.

If a statement of conformity is given, the decision rule pursuant to ILAC-G8: 09/2019 Art. 4.2.1 – binary statement for the simple acceptance rule shall be used.

Test title:	Structural safety
Requirement specification:	ČSN EN 13240/A2:2005 Art. 4.2.4, 4.2.5, 4.2.9
Sample tested:	Fireplace stove for wood Kat I, Kat II, Kat III

Measuring equipment used:

No. 8, Table 3

Required product properties	Requirement specification	Test result	Note
ČSN EN 13240/A2:2005 Art.:			
Flue spigot or socket For horizontal flue connection, the flue spigot/socket shall be designed to allow fitting, internal or external, over a length of at least 40 mm, of a flue gas connector. For vertical flue connection, the fitting shall overlap by at least 25 mm. NOTE For inset appliances (made for fireplace recesses) with a vertical chimney flue connection and where the manufacturer's installation instructions specify, in addition to the flue gas connector, that an insulating mortar infill should be added around the connector to seal the appliance to the chimney flue, then in this case it is permissible for the flue spigot/socket overlap to be reduced to a minimum of 6 mm.	4.2.4	+	Vertical, from top 150 mm
Flueways The size of the flueway in its minimum dimension shall be not less than 30 mm except it shall be permissible to reduce it to not less than 15 mm for appliances designed only to burn fuels other than bituminous coals and peat briquettes, and where an access door(s) is provided for cleaning the flueway. It shall be possible to clean the flueways of the appliance completely using commercially available tools or brushes, unless special tools or brushes are provided by the appliance manufacturer.	4.2.5	+	> 50 mm
Control of flue gas If a flue damper is fitted it shall be of a type, which does not block the flue totally. The damper shall be easy to operate and incorporate an aperture within the blade, which in a continuous area occupies at least 20 cm ² or 3 % of the cross-sectional area of the blade if this is greater. The position of the damper shall be recognizable from the setting of the device. If a draught regulator is fitted the minimum cross sectional area requirement shall not be applicable but the device shall be easily accessible for cleaning.	4.2.9	0	

*) Evaluation result:

+.... Requirement fulfilled

 $0, \mathrm{ac}$. Requirement does not apply to the product in question

Accredited test and title:	number T004 T00	
Test method:	ČSN EN 13240/A	2:2005 Art. A1-A6, FprEN 16510-1 Annexes A-I, FprEN 16510-2-1 Annexes A-I

Sample tested:Fireplace stove for wood Kat I, Kat II, Kat IIIMeasuring equipment used:Nos 1 ÷ 12 – see Measuring and Test Equipment

Test results: Kat I

Date of testing: 2022-0	6-06		to	, = 18	°C	r.h. = 23	3	%	pa =	= 98.3	kPa
Place of testing: At SZU			Manu premi	ifacturer's ses		At the Custo premise			Other:		
					_hh				Limi	it acc. to:	
Values measured and calculated: Nominal output	Unit		1	2	3	Average	EN 1324		DIN+	15a-BvG	I.BImSchV Stufe 2
Fuel used: Hornbeam wood	mm			3	30						
Combustion air setting – primary/secondary-common	mm			55	5/55						
Mass of the test fuel fired hourly	kg/h	2,	,38	2,45	2,60	2,50					
Input attained	kW	9	9,9	10,2	10,9	10,3					
Combustion air temperature	°C	1	18	18	18	18					
Flue draught	Pa	1	12	12	12	12					
Average flue gas temperature	°C	2	41	227	231	233		_			
CO ₂	%		,26	8,78	9,59	8,88					
CO – measured	%	_	892	0,0662	0,0690						
CO – at O ₂ = 13 %	%)855	0,0590	0,0557	0,0667		_			
CO - at O ₂ = 13 %	mg/Nr 3	n 10	068	737	697	834			≤1500		≤1250
CO – at O ₂ = 0 %	mg/M	J 7	38	509	482	576				≤1100	
NO _x – measured	ppm	6	67	80	77	75					
NOx - at O ₂ = 13 %	mg/Nr 3	n 1	33	147	128	136			≤200		
$NOx - at O_2 = 0 \%$	mg/M	JS	92	101	88	94				≤150	
OGC - measured	ppm	7	70	58	50	59					
OGC (TOC) – at O ₂ = 13 %	mg/Nr 3	n 1:	20	93	72	95			≤120		
OGC (TOC) - at O ₂ = 0 %	mg/M	J E	83	64	50	66			_	≤50	
Chimney loss	%	20	0,8	18,4	17,4	18,9					
Proportion of losses through latent heat	%	0),7	0,5	0,5	0,6					
Proportion of losses through combustible constituents in the residue	%	0),5	0,5	0,5	0,5					
Efficiency	%	78	8,0	80,6	81,7	80,1			≥75	≥80	≥75
Total heat output attained	kW	7	7,7	8,2	8,9	8,3					
Heat output - uncertainty	kW	0),3	0,3	0,3	0,3					
Water heat output attained	kW		-	-	-	-	_				
Nominal heat output	kW			8	3.0						
Dry flue gases mass flow	g/s	8	3,2	8	7,9	8					
CO ₂	%	8	,37	9,15	10,31	9,28					
Dust – measured	mg/Nr 3	n 3	32	17	62	37					
Dust (TZL) – at O ₂ = 13 %	mg/Nr 3	n ş	30	15	47	31			≤75		≤40
Dust (TZL) – at O ₂ = 0 %	mg/M	J	21	11	35	22				≤35	
Dust – uncertainty	mg/Nr	n	4	2	6	4			≤75		≤40

Test results: Kat II

								1		
Date of testing: 2022-0	6-08	to	_k = 25	⁰C	r.h. = 3	8	%	pa =	= 98.5	kPa
Place of testing: At SZU		At the Man prem			At the Custo premise			Other:		
	1	-						Lim	it acc. to:	
Values measured and calculated: Nominal output	Unit	1	2	3	Average	EN 1324	D	DIN+	15a-BvG	I.BImSchV Stufe 2
Fuel used: Hornbeam wood	mm			330						
Combustion air setting primary/secondary-common	mm		7	5/85						
Mass of the test fuel fired hourly	kg/h	3,95	3,84	4,40	4,10					
Input attained	kW	16,9	16,5	19,0	17,5					
Combustion air temperature	°C	19	19	20	19					
Flue draught	Pa	12	12	12	12					
Average flue gas temperature	°C	284	292	265	281					
CO ₂	%	9,55	9,16	9,07	9,26					
CO – measured	%	0,1353	0,1411	0,1262			_			
CO - at O ₂ = 13 %	%	0,1117	0,1198	0,1085	0,1133		_			
CO – at O ₂ = 13 %	mg/Nm 3	1397	1497	1356	1417			≤1500		≤1250
CO at O ₂ = 0 %	mg/MJ	991	1062	962	1005				≤1100	
NO _x – measured	ppm	73	61	55	63					
NOx - at O ₂ = 13 %	mg/Nm 3	123	107	98	109			≤200		
NOx - at O ₂ = 0 %	mg/MJ	88	76	69	78				≤150	
OGC – measured	ppm	82	77	64	74					
OGC (TOC) - at O ₂ = 13 %	mg/Nm 3	122	118	99	113			≤120		
OGC (TOC) – at O ₂ = 0 %	mg/MJ	87	84	70	80				≤50	
Chimney loss	%	21,7	23,2	21,1	22,0			_		
Proportion of losses through latent heat	%	0,9	1,0	0,9	1,0					
Proportion of losses through combustible constituents in the residue	%	0,5	0,5	0,5	0,5					
Efficiency	%	76,9	75,3	77,5	76,5			≥75	≥80	≥75
Total heat output attained	kW	13,0	12,4	14,7	13,4		_			
Heat output – uncertainty	kW	0,3	0,3	0,3	0,3					
Water heat output attained	kW		-	-	-					
Nominal heat output	kW		1	3.0	1		_			
Dry flue gases mass flow	g/s	8,2	8	7,9	8,0					
CO ₂	%	8,37	9,15	10,31	9,28					
Dust – measured	mg/Nm 3	32	17	62	37					
Dust (TZL) – at O ₂ = 13 %	mg/Nrr 3	¹ 30	15	47	31			≤75		≤40
Dust (TZL) - at O ₂ = 0 %	mg/MJ	21	11	35	22				≤35	
Dust – uncertainty	mg/Nm	n 4	2	6	4			≤75		≤40

Test results: Kat III

				r						
Date of testing: 2022-0	6-07	to	_k = 25	°C	r.h. = 2	2	%	p _a :	= 98.2	kPa
Place of testing: At SZU		At the Man prem			At the Custo premise			Other:		
								Lim	it acc. to:	
Values measured and calculated: Nominal output	Unit	1	2	3	Average	EN 1324	0	DIN+	15a-BvG	I.BImSchV Stufe 2
Fuel used: Hornbeam wood	mm		:	330						
Combustion air setting – primary/secondary-common	mm		11	0/60						
Mass of the test fuel fired hourly	kg/h	5,50	5,42	5,70	5,50					
Input attained	kW	23,6	23,2	24,5	23,8					
Combustion air temperature	°C	20	20	20	20					
Flue draught	Pa	12	12	13	12					
Average flue gas temperature	°C	298	306	339	314					
CO ₂	%	9,74	10,94	12,60	11,09		-	_		
CO – measured	%	0,0349	0,0606	0,1526	-		_	_		
CO - at O ₂ = 13 %	%	0,0271	0,0415	0,0889	0,0525		-			
CO – at O ₂ = 13 %	mg/Nr 3	n 339	519	1112	657			≤1500		≤1250
CO - at O ₂ = 0 %	mg/M	J 240	368	789	466				≤1100	
NO _x – measured	ppm	72	78	77	76					
NOx - at O ₂ = 13 %	mg/Nr 3	n 115	110	92	106			≤200		
NOx - at O ₂ = 0 %	mg/M	J 82	78	65	75				≤150	
OGC – measured	ppm	26	58	138	74					
OGC (TOC) – at O ₂ = 13 %	mg/Nr 3	n 37	72	149	86			≤120		
OGC (TOC) – at $O_2 = 0 \%$	mg/M	J 26	51	106	61				≤50	
Chimney loss	%	22,7	21,1	20,9	21,6					
Proportion of losses through latent heat	%	0,2	0,4	0,8	0,5					
Proportion of losses through combustible constituents in the residue	%	0,5	0,5	0,5	0,5					
Efficiency	%	76,6	78,0	77,9	77,5			≥75	≥80	≥75
Total heat output attained	kW	18,1	18,1	19,1	18,4					
Heat output – uncertainty	kW	0,4	0,4	0,4	0,4					
Water heat output attained	kW	-	-	-	-	_				
Nominal heat output	kW			8.0			-			
Dry flue gases mass flow	g/s	16,6	14,6	13,3	14,8					
CO ₂	%	10,70	11,93	13,88	12,17					
Dust – measured	mg/Nr 3	n 11	32	60	34					
Dust (TZL) – at O ₂ = 13 %	mg/Nr 3	n 8	20	32	20			≤75		≤40
Dust (TZL) - at O ₂ = 0 %	mg/M	J 6	16	25	15				≤35	
Dust – uncertainty	mg/Nr	n 2	3	4	3			≤75		≤40

Fuel analysis:

Type of fuel	Hornbeam wood							
Analytical indicator	Symbol	Unit	Value					
Carbon	С	[% of mass]	43.6					
Hydrogen	Н	[% of mass]	6.2					
Total water in original state	Wrt	[% of mass]	12.3					
Ash	A	[% of mass]	0.46					
Net calorific value	Qj	[kJ/kg]	15430					

Note: Sample in original state

Analytical indicator	Symbol	Unit	Value
Carbon	С	[% of mass]	42.19
Hydrogen	Н	[% of mass]	5.59
Total water in original state	Wrt	[% of mass]	14.08
Ash	A	[% of mass]	0.52
Net calorific value	Qj	[kJ/kg]	14930

Note: Sample in original state

Accredited test number T 004 Test of residential solid fuel burning appliances – Roomheaters and title: T 005 Adjustability test

Test method: ČSN EN 13240/A2:2005 Art. A1-A6, FprEN 16510-1 Annexes A-I, FprEN 16510-2-1 Annexes A-I

Sample tested: Fireplace stove for wood Kat I, Kat II, Kat III

Measuring equipment: Nos. 1 ÷ 7, 12 see Table – Measuring and test equipment

Test results: Kat I

Date of testing:	2022-06-06		t _{ok} =	18	°C	r.h. = 23	%	p _a = 98.3	kPa
Place of testing	at the : Engineering Test Institute	x	at the manufacturer			at the customer		other:	
Variables meas	ured and calcula	ted		Ur		Value		Limit	Note
Fuel used: woo		m	n	330					
Fuel consumptic		kg	/h	0.82					
Heat input achieved				k٧	V	2.70			
Room and comb	oustion air tempera	ature		°C		18			
Chimney draugh	nt			Pa		5		±1Pa	
Average combus	stion product temp	eratu	ıre	°()	211			
Period of burning	Period of burning				n	36			
Combustion pro	ombustion process restoration, after (time)			mi	n	1		≤20	
	he power input of ne regulator of prin					by m	eans of gra	idual setting	

Test results: Kat II

Date of testing:	2022-06-08		t _{ok} =	= 25	⁰C	r.h. = 38	%	p _a = 98.5	kPa
Place of testir	at the ng: Engineering Test Institute	x	at t manufa			at the customer		other:	
Variables mea	asured and calcula	ted		Un		Value	Limit		Note
Fuel used: wo		m	m	330					
Fuel consumption				kg/h		1.34			
Heat input ach	Heat input achieved				N	4.40			
Room and con	nbustion air tempera	ature		°C		19			
Chimney drau	ght			Pa		7		±1Pa	
Average comb	oustion product temp	peratu	ire	°(2	262			
Period of burn		m	in	44	44				
Combustion process restoration, after (time)				m	in	2		≤20	
Note:	ppliance combust			within 33-100%	by m	eans of grad	dual setting o		

<u>Test results: Kat III</u>

Date of testing:	2022-06-07	t _{ok} =	= 25	°C	r.h. = 22	%	p _a = 98.2	kPa
Place of testin	at the Place of testing: Engineering x Test Institute				at the customer		other:	
Variables mea	asured and calculate	d	Ur	nit	Value		Limit	Note
Fuel used: wo	od		m	m	330			
Fuel consumpt	tion	kg	/h	1.83				
Heat input ach	ieved		k\	N	6.10			
Room and con	nbustion air temperatu	ıre	°(0	20			
Chimney draug	ght		Р	а	7	:	±1Pa	
Average comb	ustion product tempe	rature	°(0	296			
Period of burni		m	in	33				
Combustion process restoration, after (time)			m	in	2		≤20	
	The power input of th the regulator of prima					by me	eans of grad	ual setting c

Accredited test number and title:	Test of residential solid fuel burning appliances – Roomheaters Flue gas temperature and surface temperature test

Test method: ČSN EN 13240/A2:2005 Art. A1-A6, FprEN 16510-1 Annexes A-I, FprEN 16510-2-1 Annexes A-I

Sample tested: Fireplace stove for wood Kat I, Kat II, Kat III

Measuring equipment used: Nos 1 ÷ 2, 6, 7, 12 – see Measuring and Test Equipment

Test results: Kat I

Date of testing:	202	2022-06-06 ZU 🛛 At t		t _{ok} = 18	⁰C	r.h. ≃ 23	%	p₄	a = 98.3	kPa
Place of testing:	At SZU		At t	he Manufacturer's premises		At the Custon premises			Other:	

Measured point	Material	Temper	ature rise (K)
Measured point	wateriai	Measured	Limit acc. to ČSN EN
Door handle		52*)	
Catalyst handle		63*)	
Total air control	Metal	17	25
Primary air control	Ivietal	17	
Secondary air control		23	
Chimney flap		148*)	
Average flue gas temperature after spigot	°C	274	-

Test results: Kat II

Date of testing:	202	22-06-08	3	t _{ok} = 19	°C	r.h. = 38	%	Pa	a = 98.5	kPa
Place of testing:	At SZU		At t	he Manufacturer's premises		At the Custome premises	er's		Other:	

Measured point	Material	Temper	rature rise (K)
	Wateriai	Measured	Limit acc. to ČSN EN
Door handle		58*)	
Catalyst handle		-	
Total air control	Matel	9	
Primary air control	- Metal -	9	
Secondary air control		15	
Chimney flap		-	
Average flue gas temperature after spigot	°C	331	_

Test results: Kat III

Date of testing:	202	22-06-07	,	t _{ok} = 20)	٥C		r.h. = 22	%	р	_a = 98.2 kPa
Place of testing:	At SZU		At t	he Manufactu premises	urer's At the Customer's premises				Other:		
						Tempe	ratur	e rise (K)			
Measured point		Ma	teria		Meas			Limit acc. to ČSN EN			
Door handle								10	5*)		
Catalyst handle								-			
Total air control					Metal			15			25
Primary air control								15			35
Secondary air control					-			20			
Chimney flap								-			
							1			1	
Average flue gas temperature after spigot				got		°C		37	4		

*) *Note:* It is necessary to use the supplied glove to control the handle of the front door and control of total air. The table shows the highest temperatures.

Accredited test number	T 004	Test of residential solid fuel burning appliances – Roomheaters Thermal overload test – Temperature rise of the surrounding
and title:	T 005	flammable materials

Test method: ČSN EN 13240/A2:2005 Art. A1-A6, FprEN 16510-1 Annexes A-I, FprEN 16510-2-1 Annexes A-I

Sample tested: Fireplace stove for wood Kat I, Kat II, Kat III

Measuring equipment used: Nos 1 ÷ 7, 12 - see Measuring and Test Equipment

Test results Kat I

Date of testing:	2022	-06-06		t _{ok} = 18	⁰C	r.h. = 23	%	p	a = 98.3	kPa
Place of testing:	At SZU		At	At the Manufacturer's premises		At the Cust premise			Other:	

During nominal output test (A.4.9.1)

				Maximum temperature rise									
	Test no. Ambient Flue draught			Trihedro	n – distan	се							
Test no.			1	nm		Floor		Fuel quantity					
		draught	rear	side	front	above	protector	Limit					
			400 *)	400 *)	800 *)	800*)							
		Pa				K		kg/h					
1	18	12	45	48	49	49	16	65	2.5				

During thermal overload test (A.4.9.2)

Test no. Ambient									
				Trihedro	n – distan	се]
	Flue		r	nm		Floor		Fuel quantity	
	temp.	draught	rear side front ab	above	protector	Limit			
			400 *)	400 *)	800 *)	800*)			
-	°C	Pa	K						kg/h
1	20	15	52	58	56	58	19	65	5,2

*) NOTE: The test corner was placed at the distance of 400 mm from the appliance rear wall. The test corner was placed at the distance of 400 mm from the appliance side wall. The test corner was placed at the distance of 800 mm from the front of the appliance. The test corner was placed at the distance of 800 mm above the appliance. Due to the high rise in temperature, the space underneath the stove cannot be used as storage of fuel The tables show the highest measured values.

After thermal overload test, no permanent deformation or damage to the appliance detected.

Test results Kat II

Date of testing:	2022	-06-08		t _{ok} = 25	٥C	r.h. = 38	%	p,	a = 98.5	kPa
Place of testing:	At SZU		At	the Manufacturer's premises		At the Custo premise			Other:	

During nominal output test (A.4.9.1)

Test no. Ambient		Flue draught							
				Trihedro	n – distan	ce			Fuel quantity
					mm		Floor		
	temp.		rear side front above	above	protector	Limit			
			400 *)	400 *)	800 *)	800*)			
-	°C	Pa		kg/h					
1	31	12	45	48	49	49	16	65	4.1

During thermal overload test (A.4.9.2)

lestno									
				Trihedro	n – distan	ce			Fuel quantity
	Ambient	Flue draught		1	nm		Floor		
	temp.		rear	side	front	above	protector	Limit	
			400 *)	400 *)	800 *)	800*)			
-	°C	Pa	К						kg/h
1	31	15	52	58	56	58	19	65	5,2

*) NOTE: The test corner was placed at the distance of 400 mm from the appliance rear wall. The test corner was placed at the distance of 400 mm from the appliance side wall. The test corner was placed at the distance of 800 mm from the front of the appliance. The test corner was placed at the distance of 800 mm above the appliance. Due to the high rise in temperature, the space underneath the stove cannot be used as storage of fuel

The tables show the highest measured values.

After thermal overload test, no permanent deformation or damage to the appliance detected.

Test results Kat III

Date of testing:	2022	-06-07		t _{ok} = 25	⁰C	r.h. = 22	%	p	a = 98.2	kPa
Place of testing:	At SZU		At	the Manufacturer's premises		At the Cust premise			Other:	

During nominal output test (A.4.9.1)

Jan Star		Flue draught	ſ						
Lest no					n – distan	temperatu ce			- Fuel quantity
	Ambient				nm		Floor	Limit	
	temp.		rear	side	front	above	protector		
			400 *)	400 *)	800 *)	800*)			
-	°C	Pa	K						kg/h
1	23	12	46	48	48	51	17	65	5.5

During thermal overload test (A.4.9.2)

Test no.			_						
				Trihedro	n – distan	се]
	Ambient	Flue	mm		Floor	Limit	Fuel quantity		
	temp.	draught	rear side front above		protector				
			400 *)	400 *)	800 *)	800*)			
-	°C	Pa	K						kg/h
1	24	15	53	61	60	58	22	65	10,3

The test corner was placed at the distance of 400 mm from the appliance rear wall. *) NOTE: The test corner was placed at the distance of 400 mm from the appliance side wall. The test corner was placed at the distance of 800 mm from the front of the appliance. The test corner was placed at the distance of 800 mm above the appliance. Due to the high rise in temperature, the space underneath the stove cannot be used as storage of fuel

The tables show the highest measured values.

After thermal overload test, no permanent deformation or damage to the appliance detected.

Tested by:	Radim Řepka	Date:	2022-06-10	Signed:	Rugh
Reviewed and approved by:	Ing. Radek Machara	Date:	2022-06-10	Signed:	Machora

Testing Laboratory Workplace Brno, Hudcova 424/56b, 621 00 Test Report 30-16100/T Page 16 of 16

IV. A list of referenced documents

- Order B-76446 of 2022-05-18
- Contract B-76446/30
- Amendment to the contract 0215-RaM/27627 of 2022-06-01
- ČSN EN 13240:2002/A2:2005 Roomheaters fired by solid fuel Requirements and test methods
- Technical documentation (see Chapter II)

Test Report compiled by: Ing. Jiří Dvořák

Test Report approved by:

- End of Test Report -